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ABSTRACT

J " This paper is concerned with the propagation of shocks and phase

boundaries in elastic bars. We consider materials for which the one-

dimensional stress response is piecewise linear and not monotonic. In the

presence of an applied load the dynamical fields are described by a set of

functional equations. These equations are treated asymptotically for a model

. problem involving a load which approaches a constant value. The

dynamical fields approach the solution given by a corresponding Riemann

problem at a rate (tn where n < -2 is given in terms of the stress

response. 4 , 4
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SIGNIFICANCE AND EXPLANATION

When the stress-strain law governing the dynamics of elastic bars is

nonlinear, certain loads give rise to travelling shock waves. If the stress-

strain relation is not monotonic, then these shock waves may also describe

phase boundaries. In the event the applied load approaches a constant value,

the fields in a semi-infinite bar evolve in time toward a simple wave solution

of an appropriate Riemann problem. The nature of the approach to this simple

wave depends on the detailed loading program. For materials in which the

stress-strain law is piecewise linear, the solution is governed by different

linear wave equations in distinct regions of an (x,t)-plane. The curves

separating these regions obey a set of functional-differential equations.

These equations are derived and treated asymptotically in order to determine

the large-time dependence of the solution on the complete loading history.

The rate of approach to the simple wave solution is found to be independent of

the early loading history.
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ON THE ASYMPOTIC ANALYSIS OF TRAVELLING SHOCKS
AND PHASE BOUNDARIES IN ELASTIC BARS

Thomas J. Pence

I. INTRODUCTION. This investigation is concerned with the propagation
of shocks and phase boundaries in elastic solids. Attention is restricted to
one-dimensional motions; for simplicity, imagine a bar in which transverse
displacements are absent. The problem is introduced in section II, where it
is reviewed how change of phase phenomena can be modelled by means of a
nonmonotonic stress-strain law. These laws have been studied previously in
[1], [2], [3]; a relevant experimental study is (4]. This section also
treats the simple wave that develops whenever a nonzero load a is suddenly
applied to the end of the bar. This simple wave would be expected to mirror
in some fashion the ultimate state of affairs whenever the bar is gradually
loaded at one end to the level 0, provided waves are not subsequently
reflected back from the opposite end. Issues involved in such an asymptotic
study are discussed in the third section. Section IV addresses special
considerations for materials in which the stress-strain law is piecewise
linear. Then, in section V, we carry out an asymptotic analysis for an
example problem involving such a material.

II. FORMULATION OF THE PROBLEM AND THE RIEMANN SOLUTION FOR IMPULSIVE
LOADING. Consider a homogeneous, semi-infinite elastic bar which occupies
x > 0 in a reference configuration. Pure longitudinal motion is governed by
the momentum equation

(2.1) - = ,
at- 2  ax

where u = u(x,t) is the longitudinal displacement of the bar and a is the
pstress along the axis of the bar. The density in the reference state is taken

to be one. Let
au au

(2.2) C = a ' v = au

denote respectively the strain and velocity in the bar. For elastic

materials, the stress at time t at a location which was originally at

position x is completely determined by the value of e(x,t) by means of the

constitutive relation 0 = G(C) . The sound speed of the material can be

identified by expressing (2.1) in characteristic form and is found to be

) . Here the ' symbol is the usual shorthand notation for

derivative. We shall focus attention on a hypothetical material for which the

stress-strain law a(e) is given by the smooth curve in Fig. 1. Here

Sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041.
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-1(0) - 0 and we shall restrict attention to positive values of a and c.
This entails no loss in generality since compressive motions can be treated by
considering a corresponding extensional problem for a material with a stress-
strain curve found by reflecting the original curve through the origin.
Unlike the state of affairs in gas dynamics, this technique gives correct
results even in the presence of shocks j5).

4... 0(c)

.

C

-' Fig. 1. Stress-strain curve Fig. 2. Pestricted stress-strain curve
*' indicating the jump associated

with a change of pnase

2he descending portion of the curve in Fig. 1 is its most conspicuous
feature. Zn an equilibrium setting, strains associated with this portion are
found to be unstable I1]. In the nonequilibrium case the sound speed is
imaginary and the equation of motion is elliptic at these strains. These
difficulties can be overcome by precluding these strains. This is

., accomplished in a natural fashion by considering an inverse to the a~c)
relation, namely strain as a function of stress. Since the a(e) relation is
not monotonic, there are innumerable such inverse functions. We take the
particular inverse that leads to the clipped or restricted curve as shown in
Tig. 2. The separated strain intervals are now associated with different
material phases. Here the value of the transition stress a is assumed to

be a property of the material (see [4]).Several other methods for dealing
with non-monotonic constitutive laws have also been studied (see (6], (7],

. (e]).

If a load aO(t) ) 0 is applied to the end of the bar beginning at

time t O 0, (2.1) is to be solved subject to

(2.3) *(0.t)) - a(t) , t ) 0 ,

(2.4) (x) - 0 , v(x0) -O, x) 0.

-- 2
m:2
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S"The condition (2.4) indicates that the bar is taken to be initially
undeformed and at rest. The condition (2.3) can also be written

(2.5) £(0,t) = e0 (t) , t ) 0 ,

where £ (t) is the strain associated with the stress a0(t) by means of the
curve in Fig. 2, thus

(2.6) (C0  )= 00(t)

In the event a 0t) exceeds the value a., 0 (t) will be discontinuous

and the strain field £(x,t) will necessarily include a discontinuity front
associated with a change of phase. In addition, other shock discontinuities
of a more familiar kind may arise from the intersection of characteristics
associated with different sounds speeds of the nonlinear a(c) relation.
Across any such discontinuity front, say x = s(t), the jump in field
quantities are to be restricted by the shock conditions

(2.7) ds 1i+ Iv = , dt

In general the problem given by (2.1) - (2.7) does not admit simple
analytical solutions.

An important practical problem associated with this system is that of
impulsive loading. By this is meant the situation where a0 (t) is given by

o0(t) a. In this case the problem, which is given on the quadrant

x ) 0, t > 0, is a variant of what is known as the Riemann Problem (2]. The
solution follows from the absence of both leng-th and time scales in the
initial and boundary conditions. It is given by

(2.8) £(xt) = £(X) , v(x,t) = V(M)

where X = x/t ; CM) can be found by a construction which is outlined in
the following paragraph. Other treatments of similar problems may be found
in [2].

Let a(e) be the upper convex envelope on the interval [o,c] of the

clipped curve 0(c) of Fig. 2. Here E, is the root of a(£.) = a.. The

curve a(s) will in general consist of a number of line segments connecting

portions of the clipped curve. The curve a(c) inherits the

differentiability of the original restricted curve a(c) and so will be
smooth at all values of strain in the interval 0 4 £ 4 C. with the possible

exception of E = a. At the value C = a, the derivative a'(C) may - or

may not - be discontinuous (see Fig. 3.) In the event a'(c) is

discontinuous at c a-, a'(a) is to be regarded as given by the interval

['(c), '(a-)]. In this way the graph of a'(s) is a monotonically
decreasing curve on 0 4 £ £.. Hence the eauation

(2.9) A ( -

-3-
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has solutions C for each value of A on the interval [ ), )j.
. Whenever O(E) contains line segments, (2.9) will have an interval of

solutions in £ for certain values of A, say A A ... A At all other

values of A, (2.9) uniquely determines a function CM). Next, C(A) is

extended to 0 4 A ( , A i , by defining e(l) = 0 for A > ao'(0) - X0

and cl) = for A< (C).

This construction orders the sound speeds of the rays x = At in such a

manner that values of strain associated with higher sound speeds are located
further down the bar compared to those strain values with lower sound

speeds. In the process it naturally positions shock and phase boundary curves
x = Ait, as well as ensuring the correct values of e on the x and t

axes. By virtue of (2.1), (2.7), the function v(A) is found from c(A)
through

0 A) A0

(2.10) V(A) = c(X)
V(11) - f 4'(s) ds x+ 1  4 X ( X

i - I ... n, A+ 1  0)

where
v(A - v(T + Ai[E ( At) -

The solution (2.8) of the impulsive load problem thus consists of a
partitioning of the quadrant x > 0, t > 0 into sectors by rays through the
origin. Across these rays the solution may be either smooth or
discontinuous. In the sectors, the strain and velocity fields are either
constant or arise from solutions of (2.9). In both cases it can be shown
that at least one of the two Riemann invariants associated with (2.1)
remains constant. This being the case, the solution is said to be a simple
wave.

It is worth mentioning that if at some time tI > 0 the bar is

subsequently impulsively unloaded back to a = 0 , the wave pattern which
results (before any interactions with the loading waves which at tj are
further down the bar) can be found by an analogous construction involving
lower convex envelopes of O(C) .

III. NONIMPULSIVE LOADING. Whenever the load a 0(t) is not simply a

positive constant, the solution of the system (2.1) - (2.7) is not a simple

wave similarity solution like that of the previous section. Instead one must

take account of both families of characteristics associated with (2.1).
Suppose, however, that the applied load eventually attains or merely
approaches the final value 0, . In this event, one expects the corresponding

simple wave solution with 00 (t) 0. to give the ultimate number of shocks

-5-
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and phase boundaries, and to yield the correct limiting order of the waves in
the bar as t tends to infinity. The spacing of these waves will depend on
the manner in which a0 (t) + a,,, nevertheless the value of the dynamical

fields in the limit A =x/t fixed, *t + is given by the simple wave

* . solution.

The approach to the asymptotic state may be studied by decomposing the
displacement u into the corresponding simple wave solution, and a correction

to be denoted by u . By virtue of (2.8), (2.2) the former is expressed

u 0 ()t; the latter u is assumed to be o(t) as t . m, A fixed.

Thus

(3.1) u - u0 (X)t + u(X,t) ,

while the governing equation (2.1) becomes

21(3.2) 2A A 2A + - a-t 0

t2 X 1'2 t IXt tt tux 2 u1

Here subscripts of A and t denote partial differentiation. Entering
(3.2) with (3.1) one obtains to leading and second order

0 - {1 [X2 _-0 o(U;) ]U"l

t 0.

(3.3) + X _,(u;) - t At u -A[2+t2 --da(u;)]

+ terms higher than second order.

In arriving at the above result it is necessary to make use of the expansion

a, ux)- a I (u")) + 0-Cu,)) -1U^

The expression in the last parenthesis of (3.3) dominates all succeeding
expressions for large times and so must independently vanish. Thus one draws

(3.4) uo(l) - c11 +

for constants cl 1-c2 , or

(3.5) u0( ) _ fl -,-1(s2)ds

where the superscript denotes functional inverse. It is easily verified
that (3.4) gives rise to the constant strain and velocity fields of the
impulsive load problem, while (3.5) corresponds to solutions of (2.9). The
Riemann solution discussed in the previous section is the unique way in which
it is possible to assemble these solutions (3.4) and (3.5) in a manner
which satisfies (2.4), (2.7), a0 (t) a., and also jumps over the specified
interval (a,O).

I--6-
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The nature of the approach to this simple wave is governed by the
expression in the second parenthesis of (3.3). Requiring this expression to
vanish leads to

(3.6) -2X ut + t utt = 0

in the case of (3.5), while for (3.4) it is easiest to revert back to
*independent variables x and t whereupon one finds that the equation can be

written

= O'(C1)Uxx

The latter has the familiar solution

(3.7) U A(x - ia'(c1 ) t) + B(X + V3(c I ) t) ,

for any functions A(-) and B(°). The former (3.7) is also easily solved

(3.8) u = t) + = t C(xt) + D(x/t)

for any functions C(.) and D(e). Unfortunately the boundary condition
(2.3) cannot be used directly for determining the free functions which have
emerged from this treatment. Instead one anticipates appropriate conditions
to arise from a more penetrating analysis of various short- and intermediate-
time solutions to the problem, each of which is appropriate in a different
region of the (x,t) - quadrant. In general one expects to continue the fields
between these as yet unknown regions through a detailed matching layer
analysis. Rather than pursuing this program, a method appropriate to certain
special materials will be introduced.

IV. PIECEWISE LINEAR STRESS RESPONSE We turn now to a class of model
materials in which the stress-strain curve consists of a number of linear
segments. Such models are often associated with the theory of plasticity,
nevertheless here we shall assume that loading and unloading follow the same
stress-strain curve.

The fields arising from an impulsive load can be found by the procedure
discussed in section 2. As before, each line segment in the upper convex

envelope C(C) of O(C) is associated with a front across which the strain

suffers a discontinuity. For the materials now under consideration, O(C)

will consist of nothing but line segments. It is convenient to distinguish
among three types of discontinuity fronts by drawing a distinction between the

line segments comprising c(c). We shall say

a phase boundary is a front which is associated with a line segment
which spans a clipped portion of the original curve

a contact discontinuity is a front which is associated with a line segment
which coincides with the original curve a(e), and

-7-
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a shock is a front which is associated with a line segment
which neither coincides with the original curve, nor
spans a clipped portion of the curve.

The solution of the impulsive load problem will consist of partitioning of
the (x,t)-quadrant into sectors of constant strain and velocity. These
sectors are separated by either shocks, phase boundaries or contact
discontinuities.

We now inquire as to what is the relation between this simple wave
solution and the fields which would be produced if the bar were gradually
loaded to the level 0.? As before, the simple wave solution will yield the
limiting order of waves in the bar as t tends to infinity. It will also
produce the correct final number and ordering of shocks and phase
boundaries. The contact discontinuities, however, are not associated with
true curves of discontinuity in the field variables. Instead they indicate
nondispersive wave packets across which the dynamical fields gradually change.

The approach to this simple wave can be examined by exploiting the
linearity of the material in the different strain intervals. The difficulty
lies in determining the regions in the (x,t)-plane in which the strain takes
values in the individual intervals. The boundaries of these curves must be
either curves of constant strain or curves across which the strain jumps
between values from different intervals. In either case these conditions lead

" to functional equations when the strains are expressed in terms of
D'Alembert's solution to the linear wave equation.

In order to illustrate this, we consider the material of Fig. 5. The
particular form of this stress-strain curve is motivated by its similarity to
the material previously introduced in Fig. 1. We shall suppose that

lim (t) - where Y is as indicated in Fig. 5. The corresponding

impulsive load solution is also given in Fig. 5. This solution consists of a
phase boundary and a contact discontinuity separating regions in which the
dynamical fields are constant. Suppose further that

ao(O) - 0 , 0'(t) 0

We shall let x = s(t) denote the phase boundary, while x - q(t) shall
denote the curve upon which the strain has value U, thus

(4.1) C(q(t),t) -

Let A0 , A,, A2 denote the regions in the (x,t)-plane in which the

strain lies in the respective intervals (0,a), ( ,i), (.,.). In each

aC 2 a C
region Ai the strain obeys the equation -2 - c -2 which implies that

at 2  x

(4.2) C(x,t) - fi(x + cit) + gi(-x + cit)

for as yet undetermined functions f and g. The velocity in Ai must then

P p. %-.~ ~ ~ P1. 1-1. *0? 14 ~ ;'.



A a(c)

c 2€ Eo <. C < a

0

2a(e)- ClC + D B C <.U

2 2

Fig. 4. Model material with piecewise linear stress response

*aot

contact discontinuity

: 2

. phaseb

"'ig. 5. Upper convex envelope a(e) and corresponding simple wave for
the material in Fig. 4 when > U

-9-
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be v(x,t) cifi(x +cit) - cigi(-x + cit). The fl and gi, along with

s(t) and q(t), are eight unknown functions, each of a single argument.
They must satisfy eight conditions given by: the two initial conditions
(2.4), the boundary condition (2.3), the two shock conditions (2.7), two
conditions stemming from (4.1), and 4 condition that the velocity is
continuous across x - q(t). The last three conditions in the above list g'ie
rise to functional equations since q(t) appears as an argument of f1, f2,

g11 g2 Moreover, since s(t) appears in (2.7), the condition on

x - s(t) furnishes a pair of functional differential equations. In the

expressions which follow, we shall employ parenthesis solely to indicate the
* argument of a function.

From the initial conditions (2.4) it can be shown that the Riemann

invariant associated with the characteristics q-. -c is identically zero
dt 0

on A0 . Thus f0 (z) B 0 which, by virtue of (4.2), (2.5), yields

" 0 (z/c0 ) z ; 0
9o(z) -

0 0 z( 0.

The other six unknown functions do not admit simple solution
representations. In what follows we shall restrict attention to large
times. The analysis will be shortened considerably by taking advantage of the

simple wave solution depicted in Fig. 5. This is not necessary; the
asymptotic simple wave could be deduced from the analysis. Such a program,
however, requiree the consideration - too lengthy to be included here - of
numerous possible cases.

V. LARGE-TIME DYNAMICAL FIELDS. The boundary condition (2.5) can be
incorporated directly into the functions f2, g2- In place of the functions

* fl g1, f2' g2 we shall instead employ f, g, h through the expressions

f(x + c t) + g(-x + ct) in A1
. (5.1 h(x + c2 t) - h(-x + c 2 t) + E0 (t - x/c 2 ) in A2

clf(x + cIt) - c 1g(-x + c 1 t) in A1

c 2 h(x + c2 t) + c2 h(-x + c2 t) - c 2 C0 (t - x/c2 ) in A2

The five unknowns f, g, h, s, q are to be detrmined from: two conditions

holding on x = q(t) which stem from (4.1), a condition expressing the
continuity of velocity on x - q(t), and the two shock conditions (2.7)
which hold on x - s(t). The first two of the conditions holding on x -

q(t) become

(5.3) f(q(t) + c1 t) + g(-qt) + clt) "i

(5.4) h(q(t) + c2 t) - h(-q(t) + c2t) + C0 (t - 2 q(t)) -

-10-
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With the aid of these two equations, the continuity of velocity condition may
, be written as

(5.5) f(q(t) + c t) 2. h(q(t).+ c~t
1 c1 c2

The two shock conditions can be manipulated into the form

i.'- D1

(5.6) [c1 + S(t)If~s(t) + clt) + 0 , t sufficiently large,

"." D1

" (5.7) Lc1 - s(t)]g(-s(t) + clt) + = 0 , t sufficiently large!1

* The phrase "t sufficiently large" indicates that these are the equations
which hold once the phase boundary x = s(t) has become the leading
disturbance. This eventuality follows from the simple wave solution, moreover

"*_ the simple wave solution also indicates that s(t) + V'(p)/u t and

q(t) + c2.

Assume that the wave and front speeds obey the ordering

* (s.A) c1 > ;(t) > c 2 > ;(t) > 0

for t sufficienLly large. One may conclude directly from (5.3) - (5.7)

' that

f(z) * , g(z) + g, , h(z) + h as z + Cs

' - , q(t) ; t as t +

Tve values for f., g., and a are obtained from a consideration of the

*eqiat~ins (5.3), (5.6), (5.7) for large times. As t + co these equations
beume respectively

D1 D I
f + . - + c f + - = [c - + D - 0 ,

11

which give

DI 1 -D -D
2 ou) 1

(5.9) oa= c +-= - fo =  
=

.I2c [c + a] 'L 2c 1 [c 1  a]
1 1"

The values

Sci IC 1a...
(5.10) h -2 [- - '1N - , B c

c2  2 c 22 22

S-11-I e
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follow from (5.4), (5.5). Since q(t) + c t and s(t) + t as t +*
2U

it is immediate that A0, Al, A2 tend toward the sectors of the simple wave

solution displayed in Fig. 5. Upon entering the values of f., g., h,

into (5.1), (5.2), the corresponding sector values for strain and velocity
are recovered.

In order to study the approach to these values let

SW 1

q(t) = c t + q (t)

(51)f(z) - f., + f (Z)

g(z) = g., + g1(Z)

h(z) -h. + h (Z)

for new functions s1 . qj, fl, g1, hl. Upon substituting from these

expressions into (5.3) - (5.7) and considering a balance of the second order
terms, one obtains asymptotic expressions for these functions. This procedure
applied to (5.6) yields

D

(c, + s+;(t)] iff + f1([c1 + Olt + s.(t))l +21

f t + [,+ a + 1J(t)]f 1 U[C1 + Olt + s1(t))

Wfo+ c I alf 1 (c1 + Olt)

which in turn implies

*(5.12) W ft)+-O1t)

Similarly (5.7) leads to

*C 1 ( -a]
(5.13) a~ It Wg 1( Cc1  Olt)

* .while (5.3) leads to

(5.14) f (Cc1 + C2 1t)"- - 1( c1 -c 2 1t)

-12-
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Eliminating gl and s, between (5.12) (5.13) (5.14) reveals that f,
obeys

fl- 2]- f - as z •
f1(Lc>4z) I: a:21[~=~) mz

This condition will be written

(5.15) f1 (k2 z) - kIf1 (z) as z +

where

(5.16) k , 1 a 2 - c l +a L c1 * C 2]

It follows from (5.8) that

(5.17) k2 > 1 > k1 > 0.

The asymptotic expression (5.15) indicates that

(5.18) f (z)- Az , n - ln kI/ln k2 ,

where A is undetermined. In light of (5.17), it follows that n < 0 so

that f1 (z) is indeed dominated by f. whenever z + -, as was assumed in

the development leading to (5.15). Moreover the following argument
demonstrates that

(5.19) n < -2

1 +1/2
Proof: (5.18) implies (k1/k 2 )n = k, + 1/2n, which, in conjunction with

1 1

S <  k 1 2k= - C2 <1 and n < 0 yields k +1/n > 1. This last
0 k2  c1 +2

result, along with (5.17), yields 1 + 1/2 n < 0, which is (5.19). /

One finds from (5.18), (5.12), (5.13) that

0[ + 21 [c, + i]n+1

(5.20) g 1 (z) k 1 k I , S1 (t) f At[+ A

On account of (5.20) and (5.19) one has

[c 1 + " n+l

(5.21) sl(t) - SO (n+n)f At

where so is undetermined.

-13-
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The asymptotic behavior of the corrections h(z) and q1(t) are found

(5.10) one obtains

h (2c t + q (t)) f + c2]t + q1 (t)) 0

1from which it follows that

CI  C1 +c n

(5.22) h (z) - ( 2 Az"
2 2

Equation (5.4) is the most delicate in the analysis. The exact
equation yields

(5.23) 1a = hG + hl(2c2 t + q 1 (t) - h(-q 1 (t)) + e0(-ql(t)/c 2 )

In this equation h 1 (2c2t + ql(t)) - o(1) as t + -. It is, however, not

appropriate to expand h(-q,(t)) by means of (5.11) unless q 1 (t) + -.

Assume for the moment that q,(t) + -Di then e0 (-ql(t)/c 2  ,

h(-ql(t)) + h. so that (5.23) gives up C. = j. Since C. > P the

assumption is false. Instead (5.23) demands that ql(t) + q > -m with

- h - h(-q 0 ) + E0(-q0/c2 ). In the event that h(z) admits a Taylor

* expansion at z - -q0 , then (5.22), (5.23) yields

+1h(- 0) + - 0 (-q o/c 2 )I [-q(t) + q0 ] h (2c t) - (C /c]Mc + c] At

This in turn implies that q(t) _ q9 + o(tn) whenever the coefficient in

parenthesis is not zero. Collecting the results from this section we have

f(z) - f. + Azn + o(z n)

+ n-o)ng(z) - g. + Ak 2I z n + olz n

( 5 .2 4) ~t) {z + s o  [ l + a n + 1
. . . A n + l + o(t n + l )

(n+l)f

01(€1 +2 n
h(z) - h. + A 2n n+ z + o z )

02

q(t) - c2t + q + O( t n)

-14-
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*: The constants f., hc, go, 0, ki, n are given in. (5.9), (5.10), (5.16),

(5.18). The constants A, q0, so are as yet unspecified. Indeed, in order

*to assign values to A, q0, so one may surmise that it is necessary to take

account of the complete loading history a0 (t). Consider, for example, the

" constant so. The phase boundary x - s(t) asymptotically approaches the

" line x = ct + s_. This line issues from the t axis at time t = -s0 /a, so

- that so defines a time scale for the problem. The only source of such a

time scale lies in the applied load a 0(t).

The dynamical fields are obtained by substituting from (5.24) into
* (5.1), (5.2). This yields

C~x') -C +Ac 1 cc1 + c21nnnn-(x,t) + n2 [c 2 + It I [c 2  l' jtn

22vcx,t) - au -C +2 Ac 1c + '21 c2 + , n nc2 ] tn21- P 2 ncn+1 11 2 t tI

in region A2. In region A1  one obtains

x C1 +ci n+2

C(x,t) - + A c 1 + I ]n + [ [c 1 - ] n
I x c 1t na[C

v(x,t) - -ap + Ac 1  [c i + , n [- n a n [ " ] n

I 1

Although the value of A is not found from this analysis, the exponent n
governing the rate of approach to the simple wave is determined from both the
stress-strain behavior of the material and the ultimate level of the applied
load by means of (5.18).

4
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